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Introduction

Concerns about the replicability of studies were expressed as early as in 1979 by
Robert Rosenthal, who believed that future insights would solve this problem.
However, the field of psychological science is still struggling to establish replic-
ability, as was clearly shown with the Reproducibility Project: Psychology
(RPP; Open Science Collaboration, 2015). Increased awareness of the noisiness
of results obtained using small samples is an important step towards improving
this situation (Lindsay, 2015). Results obtained with smaller samples are less
likely to be replicated than those obtained with larger samples (Cohen, 1962).
One of the difficulties in replicating small sample research is that small samples

are particularly sensitive to “researcher degrees of freedom”: decisions that
researchers make in the design and analysis of the data (Simmons, Nelson, &
Simonsohn, 2011). For example, researchers decide to combine categories,
exclude scores, add comparisons, add covariates, or transform measures. Unfor-
tunately, modifications are more common if results do not support the hypoth-
esis. For example, the impact of an extreme score will more often be detected
and adjusted if it causes a non-significant result as compared to a significant
result. With small samples, these decisions can easily affect the significance of
results, leading to inflated false-positive rates (Simmons et al., 2011).
Another issue is publication bias: studies with statistically significant results are

published more often than studies with non-significant results. Small sample
studies are often underpowered, leading to non-significant results and hence



a reduced chance to be published. On the other hand, small studies that do find
significant effects appear impressive and are more likely to be published.
Thus, researcher degrees of freedom and publication bias can lead to overesti-

mation of effects and an inflated false-positive rate in the literature (Simmons
et al., 2011). Small sample findings therefore can easily be spurious, meaning
that their replication is of great importance.
Different replication research questions require different methods. Here, we

distinguish four main research questions that can be investigated if a new study
is conducted to replicate an original study:

1. Is the new effect size similar to the original effect size?
2. Is the new effect size different from the original effect size?
3. Are the new findings different from the original findings?
4. What is the effect size in the population?

Note that questions 1 and 2 differ in where the burden of proof lies. Question 1
looks to provide support for the equality of effect sizes, whereas question 2 is
aimed at falsifying the claim of equality of effect sizes in favor of a conclusion
that the effect size was not replicated.
For all four replication research questions we recommend statistical methods

and apply them to an empirical example. Note that Anderson and Maxwell
(2016) also documented replication research questions and associated methods,
although not specifically for small samples. In the current chapter, we adopt sev-
eral suggestions from Anderson and Maxwell (2016) and add more recent
methods. R-code (R Core Team, 2017) for reproducing all chapter results is
provided as Supplementary Material available on the Open Science Framework
(https://osf.io/am7pr/). We demonstrate the four replication research methods
for the replication of Henderson, De Liver, and Gollwitzer (2008) by Lane and
Gazerian (2016). First, we introduce the original study by Henderson et al. and
its replication by Lane and Gazerian. This is followed by a discussion of the four
replication research questions and their associated methods.

Example: original study and its replication

Henderson et al. (2008) conducted a series of experiments showing that people
who planned the implementation of a chosen goal (i.e., people with an “imple-
mental mind-set”) have stronger attitudes, even towards topics unrelated to their
actions. Experiment 5 is the one that was replicated by Lane and Gazerian
(2016). It is designed to demonstrate that a focus on information that supports
the previously made decision is the reason that attitude strength increases with
an implemental mind-set. The experiment included three conditions with 46
participants in total. The first condition was a neutral condition in which partici-
pants described things they did on a typical day. The second condition was an
implemental one-sided focus condition. Participants in this condition chose
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a romantic topic to write about and wrote down three reasons for that choice.
The third condition was the implemental two-sided focus condition in which
participants made their choice and wrote down three reasons for and three
reasons against this choice. Afterwards, participants in all conditions answered
three questions rating their attitude ambivalence with respect to the issue of
making public a list with names of convicted sex offenders (e.g., “I have strong
mixed emotions both for and against making the list of convicted sex offenders
available to the general public rather than just the police”).
The descriptive statistics of the data from the experiment by Henderson et al.

(2008) are provided in Table 12.1. The effect of the conditions on attitude ambiva-
lence was significant, using an alpha value of .05, as Henderson et al. report:
F 2; 43ð Þ ¼ 3:36, p ¼ :044, η2 ¼ :13, ω2 ¼ :09, r ¼ :26. We have added the effect
size ω2, because it is less biased than effect size η2 for small samples (Okada, 2013).
Furthermore, we also computed the effect size r as used in the RPP as an additional
effect size measure (see Appendix 3 of the RRP available at osf.io/z7aux). Assuming
that all predictors (i.e., the dummy condition variables) contributed equally to the
explained variance, r2 is the explained variance per predictor, and r is the correlation
coefficient per predictor. If the conditions did not contribute equally, r2 and r are the
average explained variance or correlation coefficient per condition.
Post hoc comparisons revealed that the implemental mind-set, one-sided

group demonstrated significantly lower amounts of ambivalence compared to
the implemental mind-set, two-sided, group: t 28ð Þ ¼ 2:45, p ¼ :021, Cohen’s
d ¼ :93, Hedges’ g ¼ :50. For the t-test we added Hedges’ g to correct for an
upward bias that Cohen’s d shows with small samples. Hedges’ g is obtained by
multiplying Cohen’s d by the correction factor (1$ 3

4df$1Þ (Hedges, 1981). The
mean of the neutral mind-set group was in the middle, but it was not signifi-
cantly higher or lower than the means of other conditions (see descriptive statis-
tics in Table 12.1). Henderson et al. (2008) write: “Critically, the findings
showed that it was the evaluatively one-sided analysis of information, rather
than simply the act of deciding itself, that fostered a spillover of decreased
ambivalence” (pp. 406–407).
Lane and Gazerian (2016) replicated the experiment with 70 participants, but

found no significant effect of condition on ambivalence: F 2; 67ð Þ ¼ 1:70, p ¼ :191,

TABLE 12.1 Descriptive statistics for confirmatory information processing from the original
study: Henderson et al. (2008), and the new study: Lane and Gazerian (2016)

Neutral One-sided implemental Two-sided implemental

n μ (SD) n μ (SD) n μ (SD)

Original 16 1.23 (1.64) 15 0.16 (1.85) 15 1.82 (1.86)
New 24 -0.38 (1.44) 23 -0.14 (1.66) 23 0.39 (1.25)
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η2 ¼ :05, ω2 ¼ :02, r ¼ :16 (see also the descriptive statistics in Table 12.1). The
post hoc difference test between the one-sided and two-sided implemental mind-set
groups was not significant either: t 44ð Þ ¼ 1:24, p ¼ :222, Cohen’s d ¼ :36, Hedges’
g ¼ :25. Based on the lack of significance in the new study, Lane and Gazerian con-
clude that the effect may not replicate.

Four replication methods

Evaluating the significance (and direction) of the effect in the new study and using
it as a measure for replication, as was a main method of Lane and Gazerian, is called
“vote-counting”. Vote-counting, however, does not take into account the magni-
tude of the differences between effect sizes (Simonsohn, 2015), it is not a statistical
test of replication (Anderson & Maxwell, 2016; Verhagen & Wagenmakers, 2014),
and it leads to misleading conclusions in underpowered replication studies (Simon-
sohn, 2015). Thus, vote-counting is a poor method to assess replication. In the fol-
lowing, we discuss four alternative replication research questions and methods.

Question 1: Is the new effect size similar to the original effect size?

A frequentist approach to this replication research question is the equivalence
test (e.g., Walker & Nowacki, 2011). This test requires the researcher to specify
a region of equivalence for the difference between the original and new effect
size. If the confidence interval of the difference between effects falls entirely
within this region, the effect sizes are considered equivalent. However, it is diffi-
cult to set a region of equivalence that is reasonably limited while at the same
time the confidence interval for the difference between effects has a chance to
entirely fit within the interval. Therefore, we do not elaborate on the equiva-
lence test and focus instead on Bayesian approaches.
To evaluate whether the new effect size is similar to the original effect size,

we can compute a Bayes factor (BF; Jeffreys, 1961); see also Chapter 9 (Klaas-
sen). A BF expresses the shift in belief, relative to our prior belief, after observ-
ing the data for two competing hypotheses. A BF of 1 is undecided. BFs smaller
than 1 indicate preference for the null hypothesis, whereas BFs larger than 1
favor the alternative hypothesis. The two competing hypotheses in the BF can
be operationalized in many ways, but in the replication setting, one of the
evaluated hypotheses is often the null effect (i.e., the effect size is zero). To
evaluate the current research question, a proper alternative hypothesis is that the
effect in the new study is similar to the effect in the original study (Harms,
2018a; Ly, Etz, Marsman, & Wagenmakers, 2018; Verhagen & Wagenmakers,
2014). In this case, the BF evaluates whether the new study is closer to a null
effect, or closer to the original effect, where the original effect forms the prior
distribution in the BF for the new effect. Verhagen and Wagenmakers (2014)
developed this BF for the t-test. Harms (2018a) extended the Replication BF to
the ANOVA F-test and developed the ReplicationBF R package to
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compute it based on the sample sizes and test statistics of the original and new
study. For the ANOVA by Henderson et al. (2008) replicated by Lane and
Gazerian (2016), we obtain a Replication BF of 0.421, which means that the evi-
dence for the null hypothesis of no effect is 2.40 (i.e., 1/0.42) times stronger than
the evidence for the alternative hypothesis that the effect is similar to that in the
original study. See Figure 12.1 for a visualization by the ReplicationBF
package. The R package also includes the Replication BF for t-tests as proposed
by Verhagen and Wagenmakers (2014). For the post hoc t-test we find
a Replication BF of .72, which is again in favor of a null effect. Thus, the
Replication BF does not support replication of the omnibus ANOVA effect, nor
does it support the replication of the post hoc result that the one-sided mind-set
group scores lower on ambivalence than the two-sided mind-set group.
Ly et al. (2018) provided a simple calculation to obtain the Replication BF by

Verhagen and Wagenmakers (2014) for all models for which a BF can be
obtained: Evidence Updating (EU) Replication

BF ¼ BF combined data
BF original data

ð12:1Þ

This calculation (12.1) assumes, however, that the data are exchangeable (see
Chapter 2 for a discussion on exchangeability; Miočević, Levy, & Savord). If
the original and new study are not based on the same population, the com-
bined data may demonstrate artificially inflated variances due to different
means and standard deviations. To minimize the impact of non-exchangeable
datasets, Ly et al. (2018) suggest transforming the data. Here, the grand mean
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FIGURE 12.1 The Replication BF by Harms (2018a). The original study is the prior
for the effect size and the replication study is the posterior based on that prior and the
new study. The ratio of the two distributions at 0 on the x-axis is the Replication BF
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in Henderson et al. (2008) is actually 1.03 points higher than the grand mean
in Lane and Gazerian (2016). To address this issue, we converted the responses
to Z-scores.
To compute the BFs for the combined and original datasets, we can use the

point-and-click software JASP (JASP Team, 2018) or the BayesFactor
package (Morey & Rouder, 2018) in R. For both software packages, the BF for
the combined data is 1.50, and the BF for the original data is 1.59. Hence, the
EU Replication BF = 1.50/1.59 = .94, which favors the ANOVA null hypoth-
esis that the effect is zero. For the post hoc analysis with the alternative hypoth-
esis that the one-sided mind-set group scores lower than the two-sided mind-set
group, the BF for the combined data is 6.66 (see Figure 12.2 for the accom-
panying JASP plot) and the BF for the original data is 5.81. Hence, the EU
Replication BF = 6.66/5.81 = 1.15 for the replication of the original effect.
Thus, the EU Replication BF is ambiguous about the replication of the omnibus
ANOVA effect (i.e., BF = .94), nor does it provide strong support for the repli-
cation of the post hoc result.
Note that the BFs according to the method presented in Ly et al. (2018) are

higher than those calculated by the ReplicationBF package by Harms (2018b),
even though both are extensions of Verhagen and Wagenmakers (2014). Harms
(2018a) and Ly et al. (2018) discuss several differences between both approaches: (1)

FIGURE 12.2 BF with default prior settings in the combined data for the one-sided t-test.
The ratio of the two distributions at 0 on the x-axis is the BF
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both methods use different priors (i.e., uniform in ReplicationBF R package,
Cauchy in JASP and the BayesFactor R package), (2) the EU Replication BF
assumes exchangeability to compute the BF for the combined data, and (3) for
ANOVA models the BF computed in the ReplicationBF package is based on
the sample size and test statistics, whereas JASP and the BayesFactor package use
a more elaborate model that involves the full dataset(s). JASP currently also has
a Summary Statistics module for t-tests, regression analyses, and analyses of frequen-
cies. Whenever possible, we recommend applying both methods to obtain a more
robust evaluation of replication.

Question 2: Is the new effect size different from the original effect size?

To test whether the new effect size is different from the effect size in the ori-
ginal study, we would preferably compute a confidence interval for the differ-
ence in effect sizes. The literature does not provide such an interval for η2 or
ω2. However, with an iterative procedure based on descriptive statistics we can
obtain separate confidence intervals for ω2 in the original and new study (Stei-
ger, 2004). Let us denote the original study with subscript original, and the new
study with subscript new. For the original study ω2

original ¼ :09, 95% CI [.00, .30]
(see Supplementary Materials for all calculations). For the new study ω2

new ¼ :02,
95% CI [.00, .22]. With these confidence intervals, we can calculate
a confidence interval for the difference between both effect sizes, Dω2, by
applying the modified asymmetric method introduced by Zou (2007) for correl-
ations and squared correlations. This method takes into account that some effect
sizes have asymmetric distributions or cannot take on negative values (such as
ω2). Dω2 ¼ :07, 95% CI [-.15, .29]. Since zero is in the confidence interval of
the difference between the effect sizes, we do not reject the hypothesis that the
effect sizes are equal, and thus we retain the hypothesis that the new effect repli-
cates the original one.
For the post hoc difference between the one-sided and two-sided implemental

conditions we can compute the 95% confidence interval for standardized mean
differences (i.e., Cohen’s doriginal ¼ :93 and Cohen’s dnew ¼ :36) as given in Bonett
(2009) and included in the Supplementary Materials. The difference between
Cohen’s d for both studies is .57, 95% CI [-0.96, 2.10]. Since zero lies in the
confidence interval, we do not reject replication of the original effect size.
Alternatively, Patil, Peng, and Leek (2016) describe how non-replication of

an effect size can be tested with a prediction interval. A 95% prediction interval
aims to include the (effect size) estimate in the next study for 95% of the repli-
cations. Patil and colleagues (see Supplementary Materials) apply this method on
r as calculated in the RPP. Following their methods, we find that the prediction
interval for roriginal ¼ :26 ranges from -.12 to .57. The estimate for the new
study, rnew ¼ :16, lies within the interval of estimates that are expected given
replication (i.e., -0.12 to 0.57). Hence, we do not reject replication of the ori-
ginal effect size. Note that Patil et al. apply their method on r, which is
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considered problematic when r is based on more than two groups (see, for
example, Appendix 3 at osf.io/z7aux). The post hoc t-test value of roriginal is .42
with a prediction interval ranging from -0.03 to 0.73. For the new
study, rnew ¼ :18. Again, the correlation estimate for the new study lies within
the prediction interval, and we do not reject the hypothesis that the original
effect has been replicated.
The confidence intervals for the difference between effect sizes and the pre-

diction intervals in this example can be considered to be quite wide. If the study
results are uncertain (i.e., based on small samples), the associated confidence and
prediction intervals will less often reject replication of the original effect size.
However, especially with small studies, a failure to reject replication does not
necessarily imply replication, but rather a lack of power, which suggests that the
above methods may be inadequate for small samples.

Question 3: Are the new findings different from the original findings?

In contrast to the first two replication research questions which concerned effect
sizes, the current question concerns study findings in general. The prior predict-
ive p-value can be used to answer this question (Box, 1980; Zondervan-
Zwijnenburg, Van de Schoot, & Hoijtink, 2019). The calculation of the prior
predictive p-value starts with the simulation of datasets from the predictive dis-
tribution (with the sample size used in the new study) that are to be expected,
given the original results. Subsequently, the new observed data from the replica-
tion attempt are compared to the predicted data with respect to relevant findings
as summarized in HRF . This hypothesis includes the relevant findings of the original
study in an informative hypothesis (Hoijtink, 2012) and can include the ordering of
parameters (e.g., μ14 μ2), the sign of parameters (e.g., μ1 4 0; μ2 5 0), or the
exact value of parameters (e.g., μ1 ¼ 3; μ2 ¼ $2). Any combination of constraints
is possible. The deviation from the hypothesis for each of the predicted datasets and
for the new dataset is expressed in the statistic that we call !F. Lower !F values
indicate a better fit with the relevant features specified in HRF . With α ¼ :05,
replication of the study findings is rejected if the misfit with HRF in the new
study is equal to or higher than in the extreme 5% of the predicted data. All com-
putations can be conducted in an online interactive application presented at osf.io
/6h8x3 or with the ANOVAreplication R package (Zondervan-Zwijnenburg,
2018). The online application (utrecht-university.shinyapps.io/anovareplication)
and R package can take either raw data or summary statistics and sample sizes
as input.
The results and conclusion of Henderson et al. (2008) lead to the

following: HRF : μOne$sided implemental 5 ðμTwo$sided implemental; μNeutralÞ; Cohen’s
dOne$sided implemental; Two$sided implemental 4 :8.
If we run the test, we find that the prior predictive p-value = .130. Hence,

we do not reject replication of the original study findings. Figure 12.3 shows
the statistic !F for each of the predicted datasets and the replication by Lane and
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Gazerian (2016). Note that we do not have to run a post hoc analysis with this
method, because the conclusion for the post hoc contrast was incorporated in
HRF with “Cohen’s dOne$sided implemental; Two$sided implemental4 :8”. For the prior
predictive p-value, an original study with large standard errors (e.g., due to
a small sample) leads to a wide variety of predicted datasets, thus making it hard to
reject replication of the original study conclusions. With the ANOVAreplication
R package we can calculate the power to reject replication when all means would be
equal in the new study. Here, the statistical power was only .66, which means that
the probability that we do not reject replication incorrectly (i.e., a Type II error) is
1-.66=.34. When we calculate the required sample size to obtain sufficient power,
we find that a sample size of 41 per group would be required to reject replication of
HRF in a sample with equal group means.

Question 4: What is the effect size in the population?

At the end of the day, most researchers are concerned with the effect in the
population. To determine the population effect based on an original and new
study, numerous meta-analytic procedures have been proposed. For close repli-
cations, the fixed-effect meta-analysis can be used, which assumes that there is
one underlying population from which both studies are random samples. Conse-
quently, there is only one underlying true effect size. However, the standard
fixed-effect meta-analysis does not take publication bias into account. As
a result, standard fixed-effect meta-analyses overestimate effect sizes.
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FIGURE 12.3 Prior predictive p-value. The histogram concerns !F scores for each of the
10,000 predicted datasets with respect to the replication hypothesis. The thick black
line represents the 5,805 predicted datasets that had an !F-score of exactly 0 and were
perfectly in line with the replication hypothesis. The red line indicates the !F-score of
2.20 for the new study. The !F score for the new data is positioned in the extreme
13.0% of the predicted data (prior predictive p = .130)
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The frequentist hybrid meta-analysis (Van Aert & Van Assen, 2017b), and the
Bayesian snapshot hybrid method (Van Aert & Van Assen, 2017a) are two meta-
analytic methods developed for situations with a single replication effort that
take into account the significance of the original study (which could be caused
by publication bias). Both methods are part of the puniform R package (Van
Aert, 2018) and available as online interactive applications. The required input
are descriptive statistics and effect sizes. The frequentist hybrid meta-analysis
results in a corrected meta-analytic effect size and its associated confidence inter-
val and p-value. The output also includes the results of a standard fixed-effect
meta-analysis for comparison. The Bayesian snapshot hybrid method quantifies
the relative support, given the original and replication study, for four effect size
categories: zero, small, medium, and large. Currently, both methods can be used
for correlations and t-tests. However, the correlation for the original ANOVA
as computed by the RPP cannot be used for the meta-analytic methods, because
its standard error cannot be computed for more than two groups.
For the post hoc t-test results of Henderson et al. (2008) and Lane and Gazer-

ian (2016), the bias-corrected Hedges’ g is .37, 95% CI [-0.48, 0.94], p ¼ :232.
Thus, we cannot reject the hypothesis that the effect in the population is zero.
The standard (uncorrected) fixed-effect meta-analytic estimate was .60, 95% CI
[0.12,1.07], p ¼ :014. Whereas the fixed-effect meta-analytic effect sizes was sig-
nificant at α ¼ :05, the hybrid meta-analysis effect size is lower and has a wider
95% confidence interval. The snapshot hybrid method with equal prior prob-
abilities for the four effect size categories indicated that a small effect size
received the highest support (37.8%), followed by no effect size (30.2%),
a medium effect size (25.5%), and a large effect size (6.6%).
Besides meta-analyses that take significance of the original study into account,

we can also calculate the BF for an effect versus no effect, based on the scaled
combined data using JASP. The BF in favor of an ANOVA effect is 1.50. The
BF in favor of a post hoc t-test effect is 6.66. Hence, the evidence in the com-
bined data is positive with respect to the existence of an effect. Note that this
combined analysis does not correct for publication bias and assumes exchangeability.
Alternatively, Etz and Vandekerckhove (2016) developed a BF for t-tests, univariate
F-tests (i.e., for up to two groups), and univariate regression analyses that takes into
account publication bias, but unfortunately this BF has only been developed for the
MATLAB software package, which is not commonly used in the social sciences and
will not be described further.

Discussion

In this chapter, we presented replication research questions and associated statis-
tical techniques. In the example we used, the replication BFs pointed mostly
towards a null effect instead of a replication of the original effect; the confidence
intervals around the difference between effect sizes indicated that the difference
between the original and new study may be zero, but that they had low power;
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the prior predictive p-value demonstrated non-replication of the original study
conclusions; and meta-analyses indicated that the population effect is small, anec-
dotal, or not significantly different from zero.
We also discussed how the different methods perform with small samples. BFs

and the Bayesian snapshot meta-analysis have the advantage over null-hypothesis
significance testing (NHST) methods (e.g., confidence intervals and the prior
predictive p-value) that they cannot be underpowered. The evidence by the BF
may not be overwhelming, but at least it indicates the relative plausibility of one
hypothesis over the other after observing the data. With additional data and
Bayesian updating methods (see also Chapter 9), the evidence can become more
convincing. NHST methods, on the other hand, often result in non-significant
findings with small samples, and it remains unclear whether the (non)replication
effect was absent, or whether the analysis was underpowered.
An advantage of the prior predictive p-value is that it allows the user to test

the replication of the original study findings summarized in HRF . This hypoth-
esis can include multiple parameters, and it can convey information on their size
and ordering. In the ANOVA setting, the effect size (e.g., η2) does not provide
information about the direction of the effect. Hence, it is useful to evaluate rele-
vant features that can cover the ordering of group means.
The preferred method to test replication depends on the replication research ques-

tion at hand. Furthermore, given a replication research question, it can be insightful
to apply multiple methods to test replication (Harms, 2018a). Testing replication
yields more meaningful results with larger sample sizes, and this holds for all methods
described in this chapter. Testing replication of small sample research is challenging,
but since small samples are more susceptible to researcher degrees of freedom, it is of
utmost importance to critically evaluate small sample results with replication studies.
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Note

1 We report BF up to two decimal places, but use all available information for calculations.
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